The RNA catabolic enzymes Rex4p, Rnt1p, and Dbr1p show genetic interaction with trans-acting factors involved in processing of ITS1 in Saccharomyces cerevisiae pre-rRNA.
نویسندگان
چکیده
Eukaryotes have two types of ribosomes containing either 5.8SL or 5.8SS rRNA that are produced by alternative pre-rRNA processing. The exact processing pathway for the minor 5.8SL rRNA species is poorly documented. We have previously shown that the trans-acting factor Rrp5p and the RNA exonuclease Rex4p genetically interact to influence the ratio between the two forms of 5.8S rRNA in the yeast Saccharomyces cerevisiae. Here we report a further analysis of ITS1 processing in various yeast mutants that reveals genetic interactions between, on the one hand, Rrp5p and RNase MRP, the endonuclease required for 5.8SS rRNA synthesis, and, on the other, Rex4p, the RNase III homolog Rnt1p, and the debranching enzyme Dbr1p. Yeast cells carrying a temperature-sensitive mutation in RNase MRP (rrp2-1) exhibit a pre-rRNA processing phenotype very similar to that of the previously studied rrp5-33 mutant: ITS2 processing precedes ITS1 processing, 5.8SL rRNA becomes the major species, and ITS1 is processed at the recently reported novel site A4 located midway between sites A2 and A3. As in the rrp5-Delta3 mutant, all of these phenotypical processing features disappear upon inactivation of the REX4 gene. Moreover, inactivation of the DBR1 gene in rrp2-1, or the RNT1 gene in rrp5-Delta3 mutant cells also negates the effects of the original mutation on pre-rRNA processing. These data link a total of three RNA catabolic enzymes, Rex4p, Rnt1p, and Dbr1p, to ITS1 processing and the relative production of 5.8SS and 5.8SL rRNA. A possible model for the indirect involvement of the three enzymes in yeast pre-rRNA processing is discussed.
منابع مشابه
A cotranscriptional model for 3'-end processing of the Saccharomyces cerevisiae pre-ribosomal RNA precursor.
Cleavage of the Saccharomyces cerevisiae primary ribosomal RNA (rRNA) transcript in the 3' external transcribed spacer (ETS) by Rnt1p generates the 35S pre-rRNA, the earliest detectable species in the pre-rRNA processing pathway. In this study we show that Rnt1p is concentrated in a subnucleolar dot-shaped territory distinct from the nucleolar body. The 35S pre-rRNA is localized at the peripher...
متن کاملSlx9p facilitates efficient ITS1 processing of pre-rRNA in Saccharomyces cerevisiae.
Slx9p (Ygr081cp) is a nonessential yeast protein previously linked genetically with the DNA helicase Sgs1p. Here we report that Slx9p is involved in ribosome biogenesis in the yeast Saccharomyces cerevisiae. Deletion of SLX9 results in a mild growth defect and a reduction in the level of 18S rRNA. Co-immunoprecipitation experiments showed that Slx9p is associated with 35S, 23S, and 20S pre-rRNA...
متن کاملDbp10p, a putative RNA helicase from Saccharomyces cerevisiae, is required for ribosome biogenesis.
Ribosome biogenesis requires, in addition to rRNA molecules and ribosomal proteins, a multitude of trans-acting factors. Recently it has become clear that in the yeast Saccharomyces cerevisiae many RNA helicases of the DEAD-box and related families are involved in ribosome biogenesis. Here we show that the previously uncharacterised open reading frame YDL031w (renamed DBP10 for DEAD-box protein...
متن کاملStepwise assembly of the earliest precursors of large ribosomal subunits in yeast
Small ribosomal subunits are co-transcriptionally assembled on the nascent precursor rRNA in Saccharomyces cerevisiae. It is unknown how the highly intertwined structure of 60S large ribosomal subunits is initially formed. Here, we affinity purified and analyzed a series of pre-60S particles assembled in vivo on plasmid-encoded pre-rRNA fragments of increasing lengths, revealing a spatiotempora...
متن کاملTranscription of genes encoding trans-acting factors required for rRNA maturation/ribosomal subunit assembly is coordinately regulated with ribosomal protein genes and involves Rap1 in Saccharomyces cerevisiae.
We demonstrate that the genes encoding trans- acting factors essential for pre-rRNA processing/ribosomal subunit assembly are responsive to various kinds of stresses such as heat shock, nitrogen deprivation and a secretory defect, in coordination with ribosomal protein genes in Saccharomyces cerevisiae. The rap1-17 mutation, which produces the C-terminally truncated protein of a transcriptional...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- RNA
دوره 10 12 شماره
صفحات -
تاریخ انتشار 2004